Lesson Title:
Reader Architecture and Antenna Configurations

Copyright © 2008 by Dale R. Thompson {d.r.thompson@ieee.org}

Dale R. Thompson
Computer Science and Computer Engineering Dept.

University of Arkansas

This material is based upon work supported by the National Science Foundation under Grant No. DUE-0736741.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

http://rfidsecurity.uark.edu
Reader Layer
 Reader Challenges

• Must transmit a continuous wave (CW) carrier to power the tag at the same time it is listening for the transmission from the tag (full-duplex)
• Must be sensitive enough to receive very small signals from tag (sensitivity)
• Must detect tag in the presence of other interfering signals like other readers (selectivity)
• If operating in the ISM band, it typically has to frequency hop quickly

http://rfidsecurity.uark.edu
Bistatic configuration

- One antenna is used for transmitting and a different antenna is used for receiving.
Monostatic configuration

- The same antenna is used for both transmitting and receiving
Form Factors

http://rfidsecurity.uark.edu
Contact Information

Dale R. Thompson, Ph.D., P.E.
Associate Professor
Computer Science and Computer Engineering Dept.
JBHT – CSCE 504
1 University of Arkansas
Fayetteville, Arkansas 72701-1201

Phone: +1 (479) 575-5090
FAX: +1 (479) 575-5339
E-mail: d.r.thompson@ieee.org
WWW: http://comp.uark.edu/~drt/

http://rfidsecurity.uark.edu
Copyright Notice, Acknowledgment, and Liability Release

• **Copyright Notice**
 – This material is Copyright © 2008 by Dale R. Thompson. It may be freely redistributed in its entirety provided that this copyright notice is not removed. It may not be sold for profit or incorporated in commercial documents without the written permission of the copyright holder.

• **Acknowledgment**
 – These materials were developed through a grant from the National Science Foundation at the University of Arkansas. Any opinions, findings, and recommendations or conclusions expressed in these materials are those of the author(s) and do not necessarily reflect those of the National Science Foundation or the University of Arkansas.

• **Liability Release**
 – The curriculum activities and lessons have been designed to be safe and engaging learning experiences and have been field-tested with university students. However, due to the numerous variables that exist, the author(s) does not assume any liability for the use of this product. These curriculum activities and lessons are provided as is without any express or implied warranty. The user is responsible and liable for following all stated and generally accepted safety guidelines and practices.

http://rfidsecurity.uark.edu